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Role of Inhalation Studies with
Animals in Defining Human Health
Risks for Vehicle and
Power Plant Emissions
by Roger 0. McClellan*

Automotive vehicles and power plants using fossil fuels emit a complex array of gases and
particulate material. The physical and chemical characteristics of these emissions vary markedly
between sources and comprise only a portion of the contributors to air pollution exposure of
people. Further, it is well recognized that a single form of self-inflicted air pollution, cigarette
smoking, is the dominant cause of air pollution-induced disease. These factors minimize our
potential for developing an adequate understanding of the health effects of vehicle and power
plant emissions by studying only people. The alternative is to use the human data to the extent
feasible and complement it with information gained in studies with macromolecules, organelles,
cells, tissues and whole animals. Within this context, this paper reviews the use of inhalation
studies with animals for defining human health risks of airborne materials, especially particulate
materials. The major areas covered are: the fate of inhaled materials, the pathogenesis of disease
induced by inhaled materials and long-term animal studies to identify late-occurring effects.
Emphasis is placed on the utility of studies in whole animals as integrative models in which the
multiple processes such as xenobiotic metabolism, cell injury, repair, transformation and
promotion under the influence of many host factors interact in a manner that may not be directly
observed in isolated cells or tissues.

Introduction
It is well recognized that automotive vehicles and

power plants using fossil fuels release large quanti-
ties of gases and particles to the atmosphere. These
are the products of complete and incomplete com-
bustion as well as entrained noncombustible mate-
rials. If the fuels used were totally combustible and
combustion were perfect, the emissions would be
simple in character. Unfortunately, these conditions
are not met completely, and a small portion of the
original fuel is released as a complex mixture of
gases and particles. The physical and chemical
characteristics of the emissions are quite variable
because of variations in fuel composition, tempera-
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ture and time profiles for combustion and postcom-
bustion treatment. There is no typical combustion
process emission. This poses a difficult problem for
the epidemiologist or experimentalist who is inter-
ested in defining the health risks of combustion
process emissions. It is obvious that it is difficult, if
not impossible, to find a human population that has
been exposed to the products of a single combustion
process. On the other hand, laboratory animals
exposed to emissions from a single combustion
process are not typical of the "real world." Further,
information gained in animals may only have a
limited degree of applicability to understanding the
effects of emissions from other combustion pro-
cesses or these emissions in combination with other
materials in the environment.
The heterogeneity of the exposure is matched by

the heterogeneity and the nonspecific nature of the
biological responses resulting from exposure to
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combustion products. A wide range of functional
diseases (with associated structural changes) as
well as neoplasms have been identified as being
caused by, or at a minimum associated with,
exposure to compounds in combustion process emis-
sions. Also, it is unlikely the occurrence of any of
these diseases is exclusively related to such expo-
sures. From the foregoing, it should be obvious
that the problem of assessing the potential health
risks of exposure to combustion process emissions
is difficult and certainly more so than defining the
risks of exposure to a simple chemical compound.
Faced with these complexities, how can we define

the health risks of human exposure? As a starting
point, we can glean as much information as possible
by conducting epidemiological studies. The chief
result has been to establish the association between
self-inflicted exposure to a relatively unique form of
pollution, cigarette smoke, and a number of human
diseases (1-4), the most notable being cancer of the
respiratory tract. The overwhelming influence of
pollution from this source has made it difficult to
determine the potential effects of air pollution from
other combustion processes.
However, there are a sufficient number of epi-

demiological clues as well as the recognition of some
general similarities between cigarette smoke and
other combustion process emissions that indicate
emissions other than cigarette smoke have resulted
in disease in the past (1,3,4). With the low levels of
emissions typical of most industrialized countries
today, it is possible that no health effects are being
produced by these other emissions, or, if they are
being produced, they will be distinguishable from
those produced by cigarette smoking only by study-
ing very large populations and discerning subtle
differences. Such epidemiological studies may estab-
lish useful associations between exposure and dis-
ease. However, they are unlikely to provide more
than clues as to the mechanisms by which air
pollutants cause disease and the role of individual
constituents of air pollution.
Having established the boundaries within which

epidemiological information bearing on the effects
of air pollutants can be obtained, let us consider
other complementary types of studies. I emphasize
that these are not alternatives, but complementary
because whatever other type studies are used, they
must be linked back to man. This linkage can only
come from the study of people. The complementary
types of studies are depicted schematically in
Figure 1. To illustrate the point being made, let us
briefly consider each type of study.
With regard to macromolecules and organelles,

the biotransformation capability of xenobiotic-
metabolizing enzymes isolated from tissues and

Man
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FIGURE 1. Interrelationship between various types of studies
used to assess health risks of toxic agents to man.

especially the liver has been recognized for some
time. Recently, it has been demonstrated that high
concentrations of cytochrome P-450-dependent
monooxygenases are present in the nasal epithe-
lium from rats (5), dogs (6), guinea pigs, rabbits,
Syrian hamsters and mice (A. R. Dahl, personal
communication). The presence of these enzymes
may have great significance in understanding carci-
nogenesis in the nasal tissues as well as olfactory
function. It is assumed that these enzymes are
present in human nasal epithelium. However, it is
not sufficient to assume their presence; they must
be measured in human tissue.
Many assay systems using either bacteria or

mammalian cells have become invaluable in demon-
strating the cytotoxic, mutagenic and cell trans-
forming activity of environmental pollutants. The
reverse mutation assay in bacteria developed by
Ames (7) represents a classic example of such a
test. It provides a quick and relatively inexpensive
assay for mutagenic activity and presumptive evi-
dence of carcinogenicity (8). However, until the
material in question has been demonstrated to be
carcinogenic in animals, it cannot be stated that it is
a carcinogen. Indeed, some individuals would take
the extreme view that until a material has been
shown to be carcinogenic in man, it should not be
considered a "human carcinogen." Studies with
cells isolated from the respiratory tract provide the
opportunity to gain insight into the metabolism of
compounds of interest in mammalian cells and to
observe interactions with the cells' genetic materi-
al, thereby building a bridge to the studies in
bacteria (9,10).

Tissue studies providing linkage between the
single cell systems and whole animals are crucial for
better understanding the mechanisms of carcino-
genesis. The usefulness of tissue systems, for
example tracheal explants, for studying effects of
pollutants on respiratory tract epithelium have
been reviewed (11). Because tissues can be readily
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obtained both from laboratory animals and man, it
is possible to obtain data in several species. Such
studies have contributed substantially to our under-
standing of the metabolism of polynuclear hydro-
carbons by the respiratory tract (12,13).

Studies in whole animals provide an opportunity
to understand how the multiple processes such as
cell injury, repair, transformation and promotion
interact under the influence of many host factors to
yield an observable disease such as lung cancer or
emphysema. This is especially critical recognizing
the multifactorial nature of the origin of cancer (14).
In animal studies, the variables can be controlled;
this is most frequently not the case for human
studies. It is also possible to introduce variables
such as toxic agents that would not be appropriate
in human studies. It has been possible in some cases
to use limited data from man in combination with
data from laboratory animal studies to resolve what
otherwise appear to be inconsistencies in dose-
response data developed in different species includ-
ing man (15).

It is unfortunate that discussions of risk assess-
ment have too often centered on consideration of
the utility of a single type of study for predicting
health effects in man. To date, the perfect surro-
gate for man has not been found, and such a
surrogate is unlikely to be found in the future.
Thus, we are faced with the need to continue our
efforts to better understand how to integrate
information from several types of studies depicted
in Figure 1. In the following sections, I will provide
examples of the utility of whole animal studies.

Fate of Inhaled Materials
A major ultimate interest is to obtain reliable

estimates for man of the relationship between
exposure to pollutants and the subsequent devel-
opment of an excess of disease. One measure of
exposure is the concentration of the pollutant in the
medium surrounding man. In the case of vehicle
and power plant emissions, air is the medium of
particular concern. A distinction must, however, be
drawn between exposure and dose. Dose is the
actual quantity of material that gains entry to the
body or, subsequently, the time course of concen-
tration of the pollutant or specific constituents (or
metabolites) within the body, various tissues and,
finally, cells and specific targets such as DNA. It is
generally accepted that dose, as defined above, is a
more appropriate parameter to relate to health
effects than is exposure when attempting to estab-
lish a relationship that may be used to compare the
results of studies with macromolecules, organelles,
cells, tissues, laboratory animals and man.

Deposition of Particles
A primary factor determining the dose of an

airborne material in man is the fractional deposition
of the inhaled material. Fortunately, there is an
excellent body of information available on the depo-
sition of particulate materials in man (16), and the
basic processes (impaction, sedimentation, intercep-
tion and diffusion) that govern deposition are well
understood. The major shortcoming in our knowl-
edge is for ultrafine aerosols ( 0.5 ,um) that have not
been studied extensively in man. The deposition of
radiolabeled chain aggregates of gallium oxide that
resemble diesel soot particles in size and shape
have recently been studied in dogs (17,18). It was
shown that for 0.02 ,um and 0.1 ,um particles, 32%
and 25%, respectively, were deposited in the pul-
monary regions of beagle dogs. Approximately one-
third as much was deposited in the nasopharyngeal
and tracheobronchial regions. The values obtained
in the dogs are considered a good estimate for man
until such time as ultrafine particle deposition stuci-
ies can be conducted in people. The validity of the
estimate is enhanced by the general agreement
previously observed between particle deposition
patterns for larger particles in people and beagle
dogs (19). In addition, the values are only slightly
higher than those measured for 0.2 Vtm particles in
man (20). This difference may be related to greater
diffusional deposition by the particles of 0.02 and
0.1 ,um mass median diameter.

Retention of Particles
The data available on clearance, or conversely,

retention, of particles in man is more limited than
that available on deposition (16). Further, most of
the particle retention data obtained in people have
been for relatively short observation periods. A
major deficiency is our lack of knowledge of the
long-term respiratory tract retention of particles in
man. Some data are currently being obtained in
studies being conducted in West Germany and the
United Kingdom of persons exposed to radiolabeled
micrometer-sized particles.

In the absence of adequate data obtained directly
in man, it has been considered appropriate to use
studies in laboratory animals to estimate the long-
term retention of inhaled materials in man. The
validity of the approach has been strengthened by
the observation that the long-term retention of
zirconium oxide particles labeled with 95Nb in bea-
gle dogs and a man were similar (21). In considering
the use of data obtained in mice and rats, it must be
recognized that they generally clear particles from
the lungs more rapidly than do dogs (22).
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One type of combustion aerosol that is of particu-
lar interest is diesel exhaust soot. Chan et al. (23)
have studied the clearance of radiolabeled diesel
exhaust particles in rats and found that a portion of
the particles are retained with a clearance half-time
of 62 days. These and similar data developed at the
Inhalation Toxicology Research Institute (R. Wolff
and L. Griffis, personal communication) have been
used to predict the accumulated lung burden of
diesel soot particles following chronic exposure to
diesel exhaust. The predictions have been compared
to measured lung burdens of diesel soot particles in
rats chronically exposed to diesel exhaust (R. Hen-
derson and W. Hadley, personal communication).
The lung burdens of the chronically exposed rats
exceed the predicted burdens, especially in the rats
at the highest exposure levels where the exposure
concentration is on the order of 1 mg/m3 or higher.
The lung retention of the soot particles has also
been observed following the cessation of exposure
to varying levels of diesel exhaust. A substantial
portion of the particles was cleared very slowly
with a clearance half-time of over 200 days (24).
Thus it appears that when large quantities of diesel
soot particles are deposited in the lungs of rats,
clearance ofthe particles from the lungs is impaired.
There is an indication that the degree of impair-
ment increases with increasing exposure level. If
this is the case, then the dose (time-integrated
concentration) of particles is not proportional to
exposure level; a higher than expected dose occurs
at the higher exposure levels. This must be taken
into account in extrapolating from the highest expo-
sure levels to ambient levels of exposure relevant
to man. Effects observed at these highest levels
may be uniquely related to the accumulation of a
high burden of diesel soot particles.
A second type of combustion product aerosol of

interest is fly ash. Unfortunately, from an experi-
mental viewpoint fly ash is not a single material but
will vary in its physical and chemical characteristics
dependent upon factors such as the fuel and com-
bustion process (25,26). The limited data available
on retention of inhaled fly ash in rodents may not
adequately predict the retention of all kinds of fly
ash. The technique of neutron activation was used
in both of the most relevant studies conducted to
date. Wehner et al. (27) studied fly ash from con-
ventional combustion of coal and observed that 46Sc
and 59Fe in the ash served as effective tracers for
the matrix of the particles. The longest term com-
ponent of retention had a biological half-time ofjust
over 30 days. Griffis et al. (28) studied fly ash from
an experimental fluidized bed combustor. Using
46Sc as the tracer, they observed a long-term com-

ponent of retention with a biological half-life of 78
days.

Essentially all of the data on retention of the
diesel exhaust particles and fly ash have been obtained
in rodent species. Recognizing the extent of species
differences in long-term clearance, it is important
that these rodent studies be duplicated in animals
such as dogs or subhuman primates that are generally
considered to have a pattern of respiratory tract
clearance more like man.

Retention of Trace Elements and
Organic Compounds
What was described above is the fate of the

matrix of the inhaled particles. The matrix materi-
als, aluminosilicate for the fly ash and carbon for
the diesel soot, are generally not considered to be
particularly toxic. Attention from a toxicological
viewpoint is centered on the trace elements or
organic compounds associated with the particles.
The limited studies conducted with fly ash indi-

cate that trace elements such as cobalt are prefer-
entially removed from the fly ash particles in the
lung (27,28). These materials are available for trans-
location to other tissues and, thus, concern for
potential health effects of the fly ash should not
focus exclusively on the respiratory tract.

Interest in the fate of specific chemical constitu-
ents associated with particles is increased by rec-
ognition that different solvents can remove muta-
genic chemicals from both fly ash and diesel exhaust
soot particles (26,29-31). Some of the mutagenic
activity associated with fly ash may be attributed to
inorganic compounds. However, at least a part of it
is due to organic compounds. In the case of diesel
exhaust soot particles, the most mutagenic activity
is recovered when the particles are treated with
strong organic solvents. This, as well as the identi-
fication of specific organic compounds that are known
mutagens, focuses attention on the fate of the organic
compounds associated with the particles.

Particles contain literally a myriad of individual
compounds, with no single compound representing
even one percent of the extractable material even
when the strongest solvents are used (32). The
situation becomes even more complex when one
considers the release of organic compounds with
more biologically relevant extractants in vivo. Thus,
it has been difficult to identify specific compounds
released from diesel exhaust soot under conditions
that might be readily extended to the human lung.
King et al. (33) has reported the release of 1-
nitropyrene, a potent bacterial mutagen, in the
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presence of lung macrophages. Thus, we have qual-
itative evidence for the biological availability of
specific organic compounds. Since the question of
the availability of these compounds for interaction
with sensitive biological structures is so critical to
bridging the gap between mutagenicity assays in
bacteria and effects in animals, it is important to
consider alternative approaches.
One such approach has been to study the fate of

individual organic compounds instilled or inhaled
into the lung. Early work in this area with intra-
tracheally instilled particles was stimulated by the
finding that administration of benzo(a)pyrene coated
on ferric oxide particles to Syrian hamsters pro-
duced a carcinogenic response from the respiratory
tract epithelium closely comparable to human bron-
chogenic carcinoma (34). It is now established that
the effectiveness of cancer induction in this model is
related at least in part to the prolonged retention of
the particle-associated benzo(a)pyrene (35-37). The
influence ofparticle characteristics on benzo(a)pyrene
retention in the lung when intratracheally adminis-
tered is shown in Figure 2 (37). The authors re-
ported that all three types of particles retarded the
clearance of benzo(a)pyrene.

In considering the data obtained from intratra-
cheally instilled material, it is appropriate to ask its
relevance to inhalation, which represents a more
natural mode of entry of material into the lungs. To
aid in answering this question, studies have been
conducted in rats with benzo(a)pyrene inhaled either
coated on particles or as pure benzo(a)pyrene parti-
cles (38). As with intratracheal instillation, the
retention of particle-associated benzo(a)pyrene was
prolonged compared to when the pure compound
was inhaled (Fig. 2). It should be noted that for
both benzo(a)pyrene aerosols, retention was much
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FIGURE 2. Retention in the lung of(-) intratracheally instilled
or (---) inhaled benzo(a)pyrene or 1-nitropyrene.

shorter than for the intratracheally instilled forms.
Thus, the time integrated concentration of the mate-
rial in the lung following inhalation is substantially
less than for an equivalent amount of intratracheally
instilled material. If this parameter is important in
determining the effects of the administered mate-
rial-and I believe it is-this finding may be of
substantial toxicological importance. The differ-
ence in retention may be related to the more uni-
form distribution of the inhaled material in the lung
and its availability for metabolism. It has previously
been shown that inhaled particles are more uni-
formly distributed in the lung than intratracheally
instilled particles (39). It is of interest to determine
if benzo(a)pyrene associated with diesel soot parti-
cles is handled in the same manner. Such studies
are now in progress in our Institute.

In view of the interest in nitroaromatic com-
pounds associated with diesel exhaust soot and
other fossil fuel combustion products, the fate of a
representative compound ofthis class, 1-nitropyrene,
has been evaluated following inhalation. Sun et al.
(40) exposed rats to this radiolabeled compound by
nose-only inhalation exposure either as a coating on
gallium oxide particles or as a homogeneous ultrafine
aerosol. In contrast to the benzo(a)pyrene results,
he found rapid removal of both forms. For the
gallium oxide associated form, fecal excretion of the
radiolabel predominated (- 75%). With the pure
compound, about three-fourths of the deposited ma-
terial was excreted in the urine indicating rapid
direct absorption into the blood. These results in-
dicate that particle association of the material does
modify the fate of inhaled 1-nitropyrene.
With both inhaled benzo(a)pyrene and 1-nitro-

pyrene, there was significant radioactivity trans-
located to other tissues such as liver and kidney.
This emphasizes the need to consider not only respi-
ratory tract effects in evaluating the toxicity of
these inhaled aromatic hydrocarbons, but also pos-
sible effects in other tissues.
The studies just described utilized radiolabeled

(3H) compounds and only the radioactive tracer was
followed. Thus, the measurements represent both
the parent compound and its metabolites. Although
the total portion of the inhaled material that is
retained at later time periods is small, it is possible
that a substantial portion of it could represent one
or more key metabolites. Further work is needed to
identify the material that remains in the lung and
other tissues, and especially that which may be
bound to macromolecules. Also, recognizing poten-
tial cellular differences in sensitivity, it would be
useful to have more detailed knowledge of the
concentration in cells in vivo to correlate with data
from cultured tissue or cells (9,10,12,13).
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Health Effects of Inhaled Materials
Effects of Diesel Exhaust

Relatively few long-term studies of the health
effects of inhaled vehicle or power plant emissions
have been conducted in laboratory animals. Recent-
ly, concern over the possible carcinogenicity of
diesel exhaust particles has stimulated the conduct
of a number of studies. The major studies that have
been conducted or are in progress are listed in
Table 1. In addition to those listed, other studies
will be initiated during the next year in Japan by
the Japan Automobile Research Institute, in Swit-
zerland by the Battelle Memorial Institute and in
West Germany by the Fraunhofer Institute for
Toxicology and Aerosol Science. In considering the
studies listed in Table 1, it is important to note that
only a few of the studies involve life-span exposure
and observation. A special premium should be placed
on observation of experimental subjects for their
full life-span, recognizing that if cancers are induced
they are likely to occur in low incidence and late in
life. In addition to the studies shown in Table 1, a
number of other studies have been conducted in
which animals were exposed to whole exhaust from
internal combustion engines and evaluations focused
on nonneoplastic end points (48).

In studies completed to date, all of the observed
health effects of inhalation exposure to automotive
emissions have been nonneoplastic in nature. In
general, the responses have been similar in all
laboratory animals. The responses that are seen
appear to relate in some way to the substantial
accumulation of diesel exhaust particles in the lungs
and tracheobronchial lymph nodes (44,49-51).

After inhalation, the biological sequence ofevents
starts with the phagocytosis of particles by alveolar
macrophages. With time, there is an increase in
both the number and size of macrophages and an

increasing concentration of diesel exhaust particles
within their cytoplasm. The type II pneumocytes
also increase in number and size in the alveoli that
contain particle-laden macrophages. Both neutro-
phils and eosinophils appear to be recruited and to
phagocytize particles under conditions of high pul-
monary loading. With time, particle-laden macro-
phages form dense aggregates within alveoli, most
notably adjacent to terminal bronchioles. The sur-
rounding tissue response to the macrophage clus-
ters is highly variable. In some instances, there is a
proliferation of interstitial cells and an increase in
interstitial reticulin but in other cases, there was no
elicited response. Particles are also translocated
from alveoli to the interstitium where they are
usually contained in interstitial macrophages. Final-
ly, it has been shown that particles are transported
to local and regional lung-associated lymphoid tis-
sues. Although at later times these tissues concen-
trate a significant mass of particles within histio-
cytes, there is no evidence that other surrounding
cells are affected by their presence.
The responses in lung and lymph nodes observed

to date represent the usual response of lung to
inhaled particles of a relatively insoluble form (51).
Longer-term observations will be required to ascer-
tain whether the lesions remain the same or whether
with time, they become more functionally significant.
Substantial effort has been directed toward evalu-
ating nonmorphological responses, for example, bio-
chemical and physiological alterations. The bio-
chemical changes observed in tissues and airway
fluids have, in general, been transient by nature,
suggesting injury followed by adaptation or repair.
The physiological changes other than the influence
on clearance rates have been minimal to nonexis-
tent even at the highest exposure levels.

Investigators at the Fraunhofer Institute have
recognized the difficulty of detecting small carcino-
genic effects and have used a novel approach to

Table 1. Major long-term studies of the health effects of diesel exhaust completed or in progress.

Particle concentration, Life-span
Laboratory Reference Species ,ug/m3 study Completed
Environmental Protection Agency (41) Chinese hamster, 6000-12000 No Yes

mice, rats, cats
Fraunhofer Institute (42) Syrian hamsters 4200a Yes Yes
General Motors (43) Rats, guinea pigs 250, 750, 1500 No Yes
Lovelace Inhalation Toxicology Research Institute (44) Mice, rats 350, 3500, 7000 Yes No
Battelle-Northwest (45) Rats 8300 Yes Yes

(46) Syrian hamsters 7300
Southwest Research Institute (47) Syrian hamsters 1:60, 1:120, No Yes

Rats, mice 1:360 dilution'
aAlso, exposures to gaseous emissions only without particles.
bParticle concentrations not given.
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attempt to detect such an effect (42). They have
pretreated Syrian hamsters with subcutaneous injec-
tions of either 1.5 or 4.5 mg of diethylnitrosamine
per kilogram body weight and then exposed them
to diesel engine exhaust. One group received whole
exhaust and a second group received exhaust in
which the particles had been removed by centrifu-
gation and filtration. The rationale for the study
was that the pretreatment would produce an inci-
dence of cancer that would be on the ascending
portion of a sigmoid dose-response curve. Thus, a
small incremental increase in dose by the exhaust
exposure may give rise to a relatively larger increase
in the incidence of cancer than if the increase in
dose was from zero where the dose-response curve
is very flat. No tumors were observed in untreated
diesel exhaust-exposed animals. However, the ani-
mals pretreated with the highest dose of diethyl-
nitrosamine and exposed to diesel exhaust showed
a significantly increased incidence of papillomas of
the larynx and trachea compared to the groups
receiving only the proven carcinogen (36, 52). There
was no statistical difference in the increase in inci-
dence between animals that received whole exhaust
or particle-free exhaust. There are several possible
interpretations of the data. The enhanced incidence
of cancer may be due to carcinogenic activity in the
exhaust, the promotional effect of irritant gases
that are in the exhaust or to some other factor. The
similarity of the response in both groups (with and
without particles) suggests the effect may be due to
the promotional properties of the irritant gases. It
is significant that this is the only inhalation study
with diesel exhaust that, to date, has demonstrated
an enhanced tumor response.
One study has been conducted in which Strain A

mice were exposed to diesel exhaust. This strain
has a genetic propensity for developing lung ade-
nomas early in life and at high incidence. Contrary
to what might have been expected, the lung tumor
incidence was lower in the diesel-exposed mice than
in the nonexposed mice (53).

Effects with Cigarette Smoke
The negative carcinogenesis findings with diesel

exhaust exposure are probably not surprising when
considered in light of the results obtained with
animals exposed to cigarette smoke. In general, the
studies have yielded negative results or only a
modest increase in the incidence of respiratory
tract cancers (54-56). Two studies which yielded
positive results are of note. Doutenwill et al. (55)
conducted chronic exposure studies with Syrian
hamsters exposed to cigarette smoke and observed
3610 animals over their life-span. They observed an

increased incidence of laryngeal neoplasms that,
from the descriptions given, appear to be similar to
those observed in the Fraunhofer study with Syr-
ian hamsters exposed to diesel exhaust and diethyl-
nitrosamine. It is of interest that Doutenwill et al.
(55) did not report an enhanced effect in animals
exposed to cigarette smoke for one year and then
treated with diethylnitrosamine. Because of the
timing of the administration of the nitrosamine and
the cigarette exposure, this was not an adequate
test of the promotional properties of the cigarette
smoke. Thus, it is not strictly comparable to the
Fraunhofer study with diesel exhaust exposure after
nitrosamine treatment.
The study by Dalbey et al. (56) of cigarette

smoke exposure of Fischer 344 rats is of interest for
two reasons. First, the authors view it as the only
study in which an unequivocal tumor response in
the respiratory tract resulted from long-term ciga-
rette smoke exposure. It is noteworthy that the
difference in incidence in the exposed (9%) versus
controls (1%) was modest despite the lifetime expo-
sure. Second, the strain of rats used was the same
as that being used in the Inhalation Toxicology
Research Institute study (44) of the effects of life-
time exposure of rats and mice to diesel exhaust.
Ultimately, a comparison of the results of the two
studies should provide an indication of the relative
effectiveness of exposure to high levels of diesel
exhaust versus cigarette smoke.

Effects with Benzo(a)pyrene
Of the various constituents of combustion emis-

sions, benzo(a)pyrene has been the most extensively
studied for its carcinogenic activity. Two studies
have yielded positive results. Thyssen et al. (57)
exposed Syrian hamsters to 2.2, 9.5 or 45.6 mg of
benzo(a)pyrene/m3 for 3 to 4.5 hr/day, 7 days per
week. This resulted in a "dose" of 29, 127 or 383 mg
of benzo(a)pyrene to the three groups. At the high-
est level, severe toxic effects were noted as well as
neoplasms. The highest incidence ofneoplasms found
in the trachea and larynx was found in the interme-
diate dose group (over 50%). Bronchiogenic tumors
or tumors of the lungs were not observed.
The second positive study is of particular interest

since it involved exposure of rats and Syrian ham-
sters to benzo(a)pyrene and the irritant, sulfur
dioxide (58, 59). An increased incidence of squamous
cell carcinomas were observed in the rats with a
combined treatment of benzo(a)pyrene plus SO2.
An increased incidence was not seen in animals
receiving either treatment alone nor in Syrian ham-
sters. One of the investigators (59), commenting on
the rat study noted, "one might be tempted to
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overinterpret these findings as a demonstration of
the hazardous nature of town air, but I would
caution that it might be more realistic to suggest
that we have simulated cigarette smoking where
exposure to polycyclic hydrocarbon carcinogens is
combined with exposure to irritant substances such
as oxides of nitrogen, phenols, aldehydes, etc."
Taken together, the results of the few positive

studies lend support to the multifactorial etiology of
cancer of the respiratory tract. They suggest the
utility of conducting future studies to further assess
both the initiating and promotional properties of
combustion product emissions.

Statistical Considerations
The foregoing studies need to be considered in

light of the major statistical problem that is faced
in all animal studies, and indeed also in studies with
other systems. It is the problem of detecting low
frequency, but high consequence effects. The issue
is apparent when one considers the level of risk that
is of concern for human populations; a risk on the
order of one excess case of a disease per year in a
population of ten thousand might be viewed as
excessive. For a population of 200 million people,
this would represent 20,000 excess cases per year.
For reference purposes, this represents a risk equal
to one-fourth of the lung cancer risk attributed to
cigarette smoking in the United States. Deaths
from lung cancer attributed to smoking in the United
States account for about 4% of all fatalities annual-
ly. Although cigarette smoking is tolerated as a
social habit, it is clear that one would not want to
expose large populations to other equivalent risks.

It is immediately obvious that a risk of this
magnitude will not be detected even by studying
tens of thousands of animals exposed at levels that
are similar to those of concern for man. The only
choice, if animal studies are to be conducted, is to
utilize levels of exposure and associated doses that
are substantially greater than those likely to be
encountered by people. The extent of the problem
is apparent from consideration of the statistical
relationship shown in Figure 3. The size of the
animal population required for detection of a statis-
tically significant increase in the incidence of an
effect above that in a control population can be
readily calculated using standard methods (60). In
the example shown, 50 animals would allow detec-
tion of a 20% excess incidence at 95% statistical
confidence, assuming a control incidence of 1%.
However, 130 animals would be needed to detect a
10% excess incidence or 400 animals to detect a 5%
excess incidence with the same level of confidence.
Two things are apparent from the foregoing. First,
the level of excess risk detectable in a reasonable-
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FIGURE 3. Relationship between the number of animals in an
experimental population and the detectable incidence of an
effect in excess of the incidence in a control population. The
example shown was calculated by using a published equation
(61), assuming 95% statistical confidence and power and a 1%
incidence in the control population.

sized animal population is of the same order of
magnitude as that associated with the most significant
source of air pollution to man-cigarette smoking.
However, the total dose of cigarette smoke received
by people is probably more than 20 times that
received by rodents on a similar smoking schedule
due to their differences in life spans. Second, although
the exposure duration and dose relationships could
be solved by using much larger populations, these
attempts are soon defeated by the diminishing returns
of larger populations, e.g., the increase in sensitiv-
ity is not proportional to population size above 100
animals or so.
With the statistical issue in mind, the results of

the animal studies that have been conducted with
vehicle emissions cannot be viewed as proving the
lack of carcinogenicity of vehicle exhaust. At best,
they lend support to the notion that the use of an
increased number of diesel vehicles is unlikely to
result in an epidemic of lung cancer. On the other
hand, consideration of the negative or weakly posi-
tive results with animals exposed to cigarette smoke
suggests that the results obtained to date with
diesel exhaust exposure should be interpreted with
caution.
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